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ABSTRACT
We generalize fractional Ornstein-Uhlenbeck process whose driving term is an-
other fractional Ornstein-Uhlenbeck process. The motivation is related to stochastic
volatility model. We estimate the parameters of both processes by maximum like-
lihood method and minimum contrast method. We obtain strong consistency and
asymptotic normality of the estimators as the time length of observation becomes
large.

KEYWORDS
Stochastic differential equation, fractional Brownian motion, fractional
Ornstein-Uhlenbeck process, correlation, volatility, maximum likelihood estimator,
minimum contrast estimator, Durbin-Watson statistic.

1. Introduction and Preliminaries

Ornstein-Uhlenbeck processes driven by Levy processes have received a lot of at-
tention in finance, see Barndorff-Neilsen and Shephard (2001). Levy processes are
processes with stationary independent increments. Levy Ornstein-Uhlenbeck (LOU)
process generalizes the Ornstein-Uhlenbeck process to include jumps. The correla-
tion phenomena of volatility exists in the driving process. First we consider fractional
Ornstein-Uhlenbeck process as the driving process.

The fractional Brownian motion (fBm, in short), which provides a suitable general-
ization of the Brownian motion, is one of the simplest stochastic processes exhibiting
long range-dependence. Consider a probability space (Ω,F ,P) on which all random
variables and processes below are defined. A normalized fractional Brownian motion
{WH

t , t ≥ 0} with Hurst parameter H ∈ (0, 1) is a centered Gaussian process with
continuous sample paths whose covariance kernel is given by

E(WH
t W

H
s ) =

1

2
(s2H + t2H − |t− s|2H), s, t ≥ 0. (1.1)

The process is self similar (scale invariant) and it can be represented as a stochastic
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integral with respect to standard Brownian motion. For H = 1
2 , the process is a

standard Brownian motion. For H ̸= 1
2 , the fBm is not a semimartingale and not a

Markov process, but a Dirichlet process. The increments of the fBm are negatively
correlated for H < 1

2 and positively correlated for H > 1
2 and in this case they display

long-range dependence (persistence). The parameter H which is also called the self
similarity parameter, measures the intensity of the long range dependence.

Consider the fractional SDEs

dXt = θXtdt+ dVt, t ≥ 0, X0 = 0 (1.2)

dVt = ρVtdt+ dWH
t , t ≥ 0, V0 = 0 (1.3)

where θ < 0 and ρ < 0 are the two unknown parameters to be estimated based on
observations of the process {Xt, t ≥ 0}. Thus we have the integro fractional SDE

dXt = (θ + ρ)Xtdt− θρ

∫ t

0
Xsds+ dWH

t , t ≥ 0. (1.4)

If ρ = 0, we have the standard fractional Ornstein-Uhlenbeck (FOU) model. First, we

consider the case H = 1/2. We denote W
1/2
t =Wt. Observe that∫ T

0
XtdXt = θ

∫ T

0
X2

t dt+ ρ

∫ T

0
XtVtdt+

∫ T

0
XtdWt, (1.5)

1

T

∫ T

0
X2

t dt→ − 1

2(ρ+ θ)
a.s., (1.6)

1

T

∫ T

0
XtVtdt→ − 1

2(ρ+ θ)
a.s., (1.7)

From the SLLN for continuous martingales,

1

T

∫ T

0
XtdWt → 0 a.s. (1.8)

Hence

1

T

∫ T

0
XtdXt = − θ

2(ρ+ θ)
− ρ

2(ρ+ θ)
= −1

2
a.s. (1.9)

Observe that ∫ T

0
VtdVt = ρ

∫ T

0
V 2
t dt+

∫ T

0
VtdWt. (1.10)
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From Feigin (1976), it follows that

1

T

∫ T

0
V 2
t dt→ − 1

2ρ
a.s. (1.11)

and from SLLN for continuous martingales

1

T

∫ T

0
VtdWt → 0 a.s. (1.12)

Hence

1

T

∫ T

0
VtdVt → −1

2
a.s. (1.13)

By Itô’s formula,

1

T

∫ T

0
XtdXt =

1

2

(
X2

T

T
− 1

)
,
1

T

∫ T

0
VtdVt =

1

2

(
V 2
T

T
− 1

)
. (1.14)

From (1.9) and (1.13), it follows that

lim
T→∞

X2
T

T
= 0, lim

T→∞

V 2
T

T
= 0. (1.15)

Since Xt = θΣT + VT , where ΣT =
∫ T
0 Xsds, hence from (1.25), we have

lim
T→∞

1

2

(
V̂ 2
T

T
− 1

)
= −1

2
a.s. (1.16)

where the residuals generated by the estimation of θ at stage T

V̂T = XT −
∫ T
0 XtdXt∫ T
0 X2

t dt

∫ T

0
Xtdt a.s. (1.17)

We have the decomposition

ρ̂T =
T

2Λ̂T

(
V̂ 2
T

T
− 1

)
(1.18)

where

Λ̂T =

∫ T

0
V̂ 2
t dt. (1.19)

Further,

lim
T→∞

1

T
Λ̂T = − 1

2ρ∗
a.s. (1.20)
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where ρ∗ is defined in (1.36)
From the self-similarity of Brownian motion, we have

ΛT =

∫ T

0
W 2

t dt =
L T

∫ T

0
W 2

t/Tdt = T 2

∫ 1

0
W 2

s ds = T 2Λ1.

Consequently, for any 0 < a < 2,

lim
T→∞

1

T a
ΛT = ∞ a.s. (1.21)

From Liptser and Shiryayev (1978), we have

E

[
exp(− 1

T a
ΛT )

]
= E

[
exp(−T

2

T a
Λ1)

]
=

1√
cosh(rT (a))

(1.22)

where rT (a) =
√
2T 2−a for 0 < a < 2. Hence

lim
T→∞

E

[
exp(− 1

T a
ΛT )

]
= 0 (1.23)

which also gives (1.21). Further,

Λ̂T = ΛT (1 + o(1)) a.s. (1.24)

The maximum likelihood estimators of θ and ρ are given by

θ̂T :=
X2

T − T

2
∫ T
0 X2

t dt
, ρ̂T :=

V̂ 2
T − T

2
∫ T
0 V̂ 2

t dt
(1.24)

respectively where

V̂t := Xt − θ̂T

∫ t

0
Xsds a.s. (1.25)

= Xt −
∫ T
0 XtdXt∫ T
0 X2

t dt

∫ t

0
Xsds a.s. (1.26)

The Durbin-Watson (Durbin and Watson (1950, 1951, 1971)) statistic is given by

D̂T :=
2
∫ T
0 V̂ 2

t dt− V̂ 2
T + T∫ T

0 V̂ 2
t dt

= 2(1− ρ̂T ). (1.28)

When H = 1/2, θ < 0 and ρ < 0, using SLLN for continous martingales, Bercu et al.
(2014) showed that
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(θ̂T − θ∗)2 = O

(
log T

T

)
a.s. (1.29)

and hence

θ̂T → θ∗ a.s. as T → ∞. (1.30)

√
T (θ̂T − θ∗) →D N (0, σ2θ) (1.31)

where

θ∗ := θ + ρ (1.32)

and

σ2θ = −2θ. (1.33)

Further

ρ̂T → ρ∗ a.s. as T → ∞, (1.34)

and

√
T (ρ̂T − ρ∗) →D N (0, σ2ρ) as T → ∞ (1.35)

where

ρ∗ :=
θρ(θ + ρ)

(θ + ρ)2 + θρ
, (1.36)

and

σ2ρ := −2ρ∗((θ∗)6 + θρ((θ∗)4 − θρ(2(θ∗)2 − θρ)))

((θ∗)2 + ρθ)3
. (1.37)

2. Minimum Contrast Estimation

Minimum contrast estimator is known to be robust and efficient. First we consider the
case with H = 1/2. The MCE’s of θ and ρ are defined respectively as

θ̃T :=
−T

2
∫ T
0 X2

t dt
, ρ̃T :=

−T
2
∫ T
0 Ṽ 2

t dt
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where

Ṽt := Xt − θ̃T

∫ t

0
Xsds = Xt +

T
∫ t
0 Xsds

2
∫ T
0 X2

sds
.

We have

Ṽ 2
T − T = o(ΛT ) a.s.

We have the following asymptotic properties of the MCEs:

Theorem 2.1 When H = 1/2, when θ < 0 and ρ < 0

θ̃T → θ∗ a.s. as T → ∞.

√
T (θ̃T − θ∗) →D N (0, σ2θ) as T → ∞.

Further,

ρ̃T → ρ∗ a.s. as T → ∞,

and

√
T (ρ̃T − ρ∗) →D N (0, σ2ρ) as T → ∞.

We consider the long memory case with H ̸= 1/2. We turn to the equivalent semi-
martingale representation of the model. Let H > 1/2. Define

κH := 2HΓ(3/2−H)Γ(H + 1/2),

kH(t, s) := κ−1
H (s(t− s))

1

2
−H , λH =

2HΓ(3− 2H)Γ(H + 1
2)

Γ(3/2−H)

vt ≡ vHt := λ−1
H t2−2H , MH

t =

∫ t

0
kH(t, s)dWH

s .

From Norros et al. (1999) it is well known that MH
t is a Gaussian martingale,

called the fundamental martingale whose variance function ⟨MH⟩t is vHt . The natural
filtration of the martingale MH coincides with the natural filtration of the fBm WH

since

WH
t :=

∫ t

0
K(t, s)dMH

s (2.1)
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holds for H ∈ (1/2, 1) where

KH(t, s) := H(2H − 1)

∫ t

s
rh−

1

2 (r − s)H− 3

2 , 0 ≤ s ≤ t (2.2)

and for H = 1/2, the convention K1/2 ≡ 1 is used.
Define

Qt :=
d

dvt

∫ t

0
kH(t, s)Xsds. (2.3)

It is easy to see that

Qt =
λH

2(2− 2H)

{
t2H−1Zt +

∫ t

0
r2H−1dZs

}
. (2.4)

X admits the representation

Xt =

∫ t

0
KH(t, s)dZs. (2.5)

The natural filtration generated by the fundamental semimartingale process

Zt = θ

∫ t

0
Qsdvs +MH

t (2.6)

and the process X coincide, see Kleptsyna and Le Breton (2002). The available infor-
mation for X and Z are strictly equivalent.

Let the realization {Xt, 0 ≤ t ≤ T} or equivalently {Zt, 0 ≤ t ≤ T} be denoted by
ZT
0 . Let P

T
θ be the measure generated on the space (CT , BT ) of continuous functions on

[0, T ] with the associated Borel σ-algebra BT generated under the supremum norm by
the processXT

0 and P T
0 be the standard Wiener measure. Applying fractional Girsanov

formula, when θ is the true value of the parameter, P T
θ is absolutely continuous with

respect to P T
0 and the Radon-Nikodym derivative (likelihood) of P T

θ with respect to
P T
0 based on ZT

0 is given by

LT (θ) :=
dP T

θ

dP T
0

(ZT
0 ) = exp

{
θ

∫ T

0
QtdZt −

θ2

2

∫ T

0
Q2

tdvt

}
. (2.7)

Consider the score function, the derivative of the log-likelihood function lt(θ), which
is given by

l′T (θ) :=

∫ T

0
QtdZt − θ

∫ T

0
Q2

tdvt. (2.8)

The maximum likelihood estimators of θ and ρ are defined as

θ̂T :=

∫ T
0 QtdZt

2
∫ T
0 Q2

tdvt
, ρ̂T :=

∫ T
0 V̂tdZt

2
∫ T
0 V̂ 2

t dvt
(2.9)
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respectively, where

V̂t := Qt − θ̂T

∫ t

0
Qsdvs. (2.10)

When ρ = 0, using the fractional Itô formula, the score function l′T (θ) can be written
as

l′T (θ) =
1

2

[
λH

(2− 2H)
ZT

∫ T

0
t2H−1dZt − T

]
− θ

∫ T

0
Q2

tdvt. (2.11)

Consider the contrast function

MT (θ) = −T
2
− θ

∫ T

0
Q2

tdvt (2.12)

and the minimum contrast estimate (MCE)

θ̃T :=
−T

2
∫ T
0 Q2

tdvt.
(2.13)

M -estimator is reduced to the minimum contrast estimator. Note that the MCE does
not involve stochastic integral unlike the MLE.

Observe that (
T

−2θ

)1−H

(θ̃T − θ) =

(−2θ
T

)1−H
NT(

2θ
T

)2−2H
IT

(2.14)

where

NT := θIT − T

2
and IT :=

∫ T

0
Q2

tdvt. (2.15)

Kleptsyna and Le Breton (2002) proved the following Cameron-Martin type formula
for a > 0

E exp(−aIT ) =

{
4 sinπH

√
θ2 + 2ae−θT

πTDH
T (θ;

√
θ2 + 2a

}1/2

(2.16)

where

DH
T (θ;α) := [α cosh(α2T )− θ sinh(α2T )]

2J−H(α2T )JH−1(
α
2T )

−[α sinh(α2T )− θ cosh(α2T )]
2J1−H(α2T )JH(α2T )

(2.17)

for α > 0 and Jν is the modified Bessel function of first kind of order ν. For H = 1/2
this formula reduces to the Novikov’s formula given in Liptser and Shiryayev (1978).

By analytic continuation, this formula can be extended to the complex plane z1 ∈ C.
We have the following result from Bishwal (2011a).
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Let ϕT (z1) := E exp(z1IT ), z1 ∈ C. Then ϕT (z1) exists for |z1| ≤ δ, for some δ > 0
and is given by

ϕT (z1) =

{
4 sinπH

√
θ2 − 2z1e

−θT

πTDH
T (θ;

√
θ2 − 2z1

}1/2

(2.18)

and we choose the principal branch of the square root.
The Durbin-Watson (Durbin and Watson (1950, 1951, 1971)) statistic is given by

D̂T =
2
∫ T
0 V̂ 2

t dt− V̂ 2
T + T∫ T

0 V̂ 2
t dt

= 2(1− ρ̂T ) (2.19)

where

Ṽt := Qt − θ̃T

∫ t

0
Qsdvs. (2.20)

From Bercu, Coutin and Savy (2010), when ρ = 0, we have

lim
T→∞

IT
T

= − 1

2θ

1√
T
(IT +

T

2θ
) →D N (0, − 1

2θ3
).

We have the following asymptotic properties of the MCEs:

Theorem 2.2 When H > 1/2, when θ < 0 and ρ < 0,

θ̂T → θ∗ a.s. as T → ∞

and

√
T (θ̂T − θ∗) →D N (0, σ2θ,H) as T → ∞

where

θ∗ := θ + ρ

and

σ2θ,H = −2θλ−1
H .

Further,

ρ̂T → ρ∗ a.s. as T → ∞,
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and

√
T (ρ̂T − ρ∗) →D N (0, σ2ρ,H) as T → ∞

where

ρ∗ :=
θρ(θ + ρ)

(θ + ρ)2 + θρ
,

and

σ2ρ,H := λ−1
H

2ρ∗((θ∗)6 + θρ((θ∗)4 − θρ(2(θ∗)2 − θρ)))

((θ∗)2 + ρθ)3
.

The minimum contrast estimators (MCEs) of θ and ρ are defined as

θ̃T :=
−T

2
∫ T
0 Q2

tdvt
, ρ̃T :=

−T
2
∫ T
0 Ṽ 2

t dvt

respectively where

Ṽt := Qt − θ̃T

∫ t

0
Qsdvs.

The Durbin-Watson statistic is given by

D̃T := 2(1− ρ̃T ).

Let

D∗ := 2(1− ρ∗).

Theorem 2.3 When H > 1/2, when θ < 0 and ρ < 0

θ̃T → θ∗ a.s. as T → ∞

and

√
T (θ̃T − θ∗) →D N (0, σ2θ,H) as T → ∞.

Further

ρ̃T → ρ∗ a.s. as T → ∞,

and

√
T (ρ̃T − ρ∗) →D N (0, σ2ρ,H) as T → ∞.
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Also

√
T (D̃T −D∗) →D N (0, σ2D,H) as T → ∞

where, σ2D,H = 4σ2ρ,H .

Theorem 2.4 If ρ = 0,

T ρ̃T →D W as T → ∞

where

W =
W 2

1 − 1

2
∫ 1
0 W

2
s ds.

Also

T (D̃T − 2) →D −2W as T → ∞

where

W :=
T 2 − 1

2S

where T and S are given by the Karhunen-Loeve expansion where

T :=
√
2

∞∑
n=1

γnZn, S :=

∞∑
n=1

γ2nZ
2
n

with γn := 2(−1)n/((2n− 1)π) and Zn are i.i.d. standard normal.

3. Approximate Minimum Contrast Estimation

The process Q depends continuously on X and therefore, the discrete observations of
X does not allow one to obtain the discrete observations of Q. We consider discrete
observations of Q. The process Q can be approximated by

Q̃n = κ−1
H ηHn

2H−1
n−1∑
j=0

j1/2−H(n− j)−1/2−HXj . (3.1)

It is easy to show that Q̃n → Qt almost surely (a.s.) as n→ ∞, see Tudor and Viens
(2007). Define a new partition 0 ≤ r1 < r2 < r3 < · · · < rmk

= tk, k = 1, 2, · · · , n.
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Define

Q̃tk = κ−1
H ηHt

2H−1
k

mk∑
j=1

r
1/2−H
j (rmk

− rj)
−1/2−HXrj (rj − rj−1), k = 1, 2, · · · , n. (3.2)

It is easy to show that Q̃tk → Qt almost surely (a.s.) as mk → ∞ for each
k = 1, 2, · · · , n. We use this approximation of observations in the calculation of our
estimators.

For H = 0.5,

vti − vti−1
= λ−1

H

(
T

n

)2−2H

[i2−2H − (i− 1)2−2H ] =
T

n
, i = 1, 2, . . . , n.

Define

Ṽti−1
= Q̃ti−1

− θ̃n,T,F

n∑
i=1

Q̃ti−1
(vti − vti−1

) = Q̃ti−1
+
T
∑n

i=1 Q̃ti−1
(vti − vti−1

)

2
∑n

i=1 Q̃
2
ti−1

(vti − vti−1
)
. (3.3)

Now we define the weighted approximate minimum contrast estimators (AMCEs).
Define the weighted sum of squares

Gn,T :=

{
n∑

i=1

wtiQ̃
2
ti−1

(vti − vti−1
) +

n+1∑
i=2

wtiQ̃
2
ti−1

(vti − vti−1
)

}
, (3.4)

G1,n,T :=

{
n∑

i=1

wti Ṽ
2
ti−1

(vti − vti−1
) +

n+1∑
i=2

wti Ṽ
2
ti−1

(vti − vti−1
)

}
(3.5)

where wti ≥ 0 is a weight function with
∑n

i=1wti = 1. Define the discrete increasing
functions

In,T :=

n∑
i=1

Q̃2
ti−1

(vti − vti−1
), (3.6)

Jn,T :=

n+1∑
i=2

Q̃2
ti−1

(vti − vti−1
) =

n∑
i=1

Q̃2
ti(vti − vti−1

), (3.7)

I1,n,T :=

n∑
i=1

Ṽ 2
ti−1

(vti − vti−1
), (3.8)

J1,n,T :=

n+1∑
i=2

Ṽ 2
ti−1

(vti − vti−1
) =

n∑
i=1

Ṽ 2
ti (vti − vti−1

). (3.9)
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General weighted AMCE of θ is defined as

θ̃n,T := −
{
2

T
Gn,T

}−1

. (3.10)

General weighted AMCE of ρ is defined as

ρ̃n,T := −
{
2

T
G1,n,T

}−1

. (3.11)

With wti = 1, we obtain the forward AMCE of θ as

θ̃n,T,F := −
{
2

T
In,T

}−1

. (3.12)

With wti = 1, we obtain the forward AMCE of ρ as

ρ̃n,T,F := −
{
2

T
I1,n,T

}−1

. (3.13)

With wti = 0, we obtain the backward AMCE of θ as

θ̃n,T,B := −
{
2

T
Jn,T

}−1

. (3.14)

With wti = 0, we obtain the backward AMCE of ρ as

ρ̃n,T,B := −
{
2

T
J1,n,T

}−1

. (3.15)

With wti = 0.5, the simple symmetric AMCE of θ is defined as

θ̃n,T,s := −
{
1

T
[In,T + Jn,T ]

}−1

. (3.16)

Note that

θ̃n,T,s = −

{
2

T

n∑
i=2

Q̃2
ti−1

(vti − vti−1
) + 0.5(Q̃2

t0 + Q̃2
tn)(vti − vti−1

)

}−1

. (3.17)

With wti = 0.5, the simple symmetric AMCE of ρ is defined as

ρ̃n,T,s := −
{
1

T
[I1,n,T + J1,n,T ]

}−1

(3.18)
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Note that

ρ̃n,T,s = −

{
2

T

n∑
i=2

Ṽ 2
ti−1

(vti − vti−1
) + 0.5(Ṽ 2

t0 + Ṽ 2
tn)(vti − vti−1

)

}−1

. (3.19)

With the weight function

wti =


0 : i = 1

i−1
n : i = 2, 3, · · · , n
1 : i = n+ 1

(3.20)

the weighted symmetric AMCE of θ is defined as

θ̃n,T,w := −

{
2

T

n∑
i=2

Q̃2
ti−1

(vti − vti−1
) +

1

n

n∑
i=1

Q̃2
ti−1

(vti − vti−1
)

}−1

. (3.21)

and the weighted symmetric AMCE of ρ is defined as

ρ̃n,T,w := −

{
2

T

n∑
i=2

Ṽ 2
ti−1

(vti − vti−1
) +

1

n

n∑
i=1

Ṽ 2
ti−1

(vti − vti−1
)

}−1

. (3.22)

Note that estimators (3.21) and (3.22) are analogous to the trapezoidal rule in
numerical analysis. One can instead use the midpoint rule to define the estimators

θ̃n,T,A := −

 2

T

n∑
i=1

(
Q̃ti−1

+ Q̃ti

2

)2

(vti − vti−1
)


−1

. (3.23)

ρ̃n,T,A := −

 2

T

n∑
i=1

(
Ṽti−1

+ Ṽti
2

)2

(vti − vti−1
)


−1

. (3.24)

One can use the Simpson’s rule to define the following estimators where the denom-
inator is a convex combination of the midpoint and the trapezoidal rule:

θ̃n,T,S := −

 1

3T

n∑
i=1

Q̃2
ti−1

+ 4

(
Q̃ti−1

+ Q̃ti

2

)2

+ Q̃2
ti

(vti − vti−1
)


−1

. (3.25)

ρ̃n,T,S := −

 1

3T

n∑
i=1

Ṽ 2
ti−1

+ 4

(
Ṽti−1

+ Ṽti
2

)2

+ Ṽ 2
ti

(vti − vti−1
)


−1

. (3.26)

Finally, the Durbin-Watson statistics are given by

D̃n,T,F := 2(1− ρ̃n,T,F ) (3.27)
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and

D̃n,T,S := 2(1− ρ̃n,T,S). (3.28)

The following theorem shows that asymptotic normality of the AMCEs need
T → ∞ and T√

n
→ 0.

Theorem 3.1 Denote rn,T := T−1/2(log T )1/2 ∨ (T
4

n2 )(log T )−1).

(a) sup
x∈R

∣∣∣∣∣P
{(

− T

2θ

)1/2

(θ̃n,T,F − θ∗) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(rn,T ),

(b) sup
x∈R

∣∣∣P {I1/2n,T (θ̃n,T,F − θ∗) ≤ x
}
− Φ(x)

∣∣∣ = O(rn,T ),

(c) sup
x∈R

∣∣∣∣∣∣P

(

T

2|θ̃n,T,F |

)1/2

(θ̃n,T,F − θ∗) ≤ x

− Φ(x)

∣∣∣∣∣∣ = O(rn,T ),

(d) sup
x∈R

∣∣∣∣∣∣P

(

T

σ2ρ,H

)1/2

(ρ̃n,T,F − ρ∗) ≤ x

− Φ(x)

∣∣∣∣∣∣ = O(rn,T ),

(e) sup
x∈R

∣∣∣P {I1/21,n,T (ρ̃n,T,F − ρ∗) ≤ x
}
− Φ(x)

∣∣∣ = O(rn,T ),

(f) sup
x∈R

∣∣∣∣∣P
{(

T

2|ρ̃n,T,F |

)1/2

(ρ̃n,T,F − ρ∗) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(rn,T ),

(g) sup
x∈R

∣∣∣∣∣∣P

(

T

2σ2D,H

)1/2

(D̃n,T,F −D∗) ≤ x

− Φ(x)

∣∣∣∣∣∣ = O(rn,T ).

In the following theorem, we improve the bound on the error of normal approxima-
tion using a mixture of random and nonrandom normings. Thus asymptotic normality
of the AMCEs need T → ∞ and T

n2/3 → 0 which are sharper than the bound in
Theorem 3.1.

Theorem 3.2

(a) sup
x∈R

∣∣∣∣∣P
{
In,T

(
−2θ

T

)1/2

(θ̃n,T,F − θ∗) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O

(
T−1/2 ∨

(
T 3

n2

)1/3
)
.

(b) sup
x∈R

∣∣∣∣∣∣P
I1,n,T

(
σ2ρ,H
T

)1/2

(ρ̃n,T,F − ρ∗) ≤ x

− Φ(x)

∣∣∣∣∣∣ = O

(
T−1/2 ∨

(
T 3

n2

)1/3
)
.

The following theorem gives stochastic bound on the error of approximation of the
continuous MCE by AMCEs.
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Theorem 3.3

(a) |θ̃n,T − θ̃T | = OP

(
T

n

)1/2

, (b) |θ̃n,T,s − θ̃T | = OP

(
T 2

n2

)1/2

,

(c) |ρ̃n,T − ρ̃T | = OP

(
T

n

)1/2

, (d) |ρ̃n,T,s − ρ̃T | = OP

(
T 2

n2

)1/2

.

The proofs of Theorem 3.1, 3.2 and 3.3 are analogous to the respective proofs of
Theorem 2.1, 2.2 and 2.3 in Bishwal (2011a) and hence we omit the details.

4. Examples: Factor Models

4.1. Discrete Factor Models

The Capital Asset Pricing Model (CAPM), introduced by Sharpe (1964), uses various
assumptions about the markets and investors’ behavior to establish a set of equilib-
rium conditions that allow investors to predict the return of an asset for its level of
systematic risk. Systematic risk is also known as the aggregate, non-diversifiable, or
market risk. The CAPM uses a measure of systematic risk that can be compared
with other assets in the market. This measure of risk allows investors to improve their
portfolios and to find their required rate of return.

The Capital Asset Pricing Model is based on the following assumptions:
A1) The Market prices are in equilibrium, i.e., supply equals demand.
A2) All investors are rational and risk-averse.
A3) All investors have the same forecast of expected returns and risk.
A4) All investors are price takers, i.e., they cannot influence the prices.
A5) Markets are frictionless (the borrowing rate is equal to the lending rate).
A6) All information is available at the same time to all investors.
A7) Trade without transaction or taxation costs.
A8) All assets are perfectly divisible and liquid.
A9) All investors are broadly diversified across a range of investments.
Under an efficient market hypothesis (EMH), which states that financial markets

are informationally efficient, all the previously mentioned assumptions are reasonable
and valid. The validity of the CAPM can only be guaranteed if all of these assumptions
are true.

The Capital Market Line (CML) is the tangent line drawn from the risk free point
to the feasible region for risky assets. CML relates the excess expected return on
an efficient portfolio to its risk. Excess expected return is the difference between the
expected return from the risk-free rate of the return. It is also called the risk premium.
Let R be the return on the given efficient portfolio, i.e., the mixture of the Market
portfolio and the risk-free asset. The equation for the CML is given by:

µR = µf + (µM − µf )
σR
σM

(4.1)
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Here µR is the expected return of the portfolio, µf is the risk-free rate of return and
µM is the expected return of the market portfolio, σM is the standard deviation of
the return on the market portfolio, and σR is the standard deviation of the return on
the portfolio. The excess expected return of a portfolio R is µR−µf and the expected
return of the market portfolio is µM − µf . In (4.1) µf , µM , and σM are constants.
What varies are σR and µR. These vary as we change the efficient portfolio R.

The slope of the CML is given by (µM − µf )/σM which can be interpreted as the
ratio of the risk premium to the standard deviation of the market portfolio. This is
also known as Sharpe’s reward –to-risk ratio. The equation (4.1) can be rewritten as

(µR − µf )/σR = (µM − µf )/σM

which says that the reward-to-risk ratio for any efficient portfolio equals to the reward-
to-risk ratio for the market portfolio. The CML is easy to derive. Consider an efficient
portfolio that assigns a proportion weight (ω) of its assets to the market portfolio and
(1− ω) to the risk-free assets. Then

R = ωRM + (1− ω)µf = µf + ω(RM − µf ) (4.2)

Therefore, taking expectation both sides in (4.2), we obtain

µR = µf + ω(µM − µf ) (4.3)

Also from (4.2)

σR = ωσM (4.4)

which gives

ω = σR/σM . (4.5)

Substituting (4.5) into (4.3) gives the CML. One can view ω = σR/σM as an index
of the risk aversion of the investor. The smaller the value of ω, the more risk averse
the investor. If an investor places zero weight (ω = 0) on an asset, then that investor
is 100% in risk-free assets. Similarly, if an investor places 100% weight (ω = 1) on an
asset, then that investor is totally invested in the tangency portfolio of risky assets.
The plot of reward as quantified by expected return versus the risk as measured by
standard deviation of the return is a parabola. The left most point on the parabola
achieves the minimum value of the risk and is called the minimum variance portfolio.
The Sharpe ratio is the ratio of the reward to the risk. A line joining the risk-free rate
to the parabola of reward versus risk with a large slope gives a higher expected return
for a given level of risk. Sharpe ratio is the slope of the line. Thus larger the Sharpe
ratio, the better is the expected return regardless of what level of risk one is willing
to accept. The portfolio with highest Sharpe ratio is called Tangency Portfolio. The
efficient frontier is the part of the parabola that has an expected return at least as
large as the minimum variance portfolio. This is the optimal or efficient portfolio for
the purpose of mixing the tangency portfolio of two risky assets with the risk-free
asset. Each efficient portfolio has two properties:
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1) It has a higher expected return than any other portfolio with the same (or smaller)
risk.

2) It has a smaller risk than any other portfolio with the same (or smaller) expected
return.

Therefore, we could only improve (reduce) the risk of an efficient portfolio by ac-
cepting a worse (smaller) expected return, and we can only improve (increase) the
expected return of an efficient portfolio by accepting worse (higher) risk.

The Security Market Line (SML) relates the excess return on an asset to the slope of
its regression on the market portfolio. Suppose that there are many securities indexed
by j. Define

βj = σjM/σ
2
M (4.6)

where σjM is the covariance between the returns on the j-th security and the market
portfolio. By using returns of the market portfolio as the predictor variable, βj is
the slope of the best linear predictor of the j-th security’s return. Another way to
interpret the significance of βj is based on linear regression. Linear regression is a
method for estimating the coefficients of the best linear predictor based upon data.
To apply linear regression, suppose that we have a bivariate time series (Rj,t, RM,t)

n
t=1

of returns on the j-th asset and the market portfolio. Then the estimated slope of the
linear regression of Rj,t on RM,t is

β̂j =

(
n∑

t=1

(Rj,t − R̄j)(RM,t − R̄M )

)
/

n∑
t=1

(RM,t − R̄M )2. (4.7)

After multiplying the numerator and the denominator by n−1, β̂j becomes an estimate
of σjM divided by an estimate of σ2M and therefore the expression (4.7) is an estimate
of βj . The Security Market Line (SML) is given by:

µj − µf = βj(µM − µf ) (4.8)

where µj is the expected return on the j-th security and µj − µf is the risk premium
for that security. Here, βj is the independent variable in the linear equation, not the
slope; more precisely, µj is a linear function of βj with slope (µM −µf ). The SML says
that the risk premium of the j-th asset is the product of its beta and the risk premium
of the market portfolio. Therefore, βj measures both the riskiness of the j-th asset
and the reward for assuming that risk. When βj = 0, a risky asset that is uncorrelated
with the market portfolio will have an expected rate of return equal to the risk free
rate. There is no expected excess return over risk-free asset even the investor bears
some risk in holding a risky asset with zero beta. When βj = 1, a risky asset which
is perfectly correlated with the market portfolio has the same expected rate of return
as the market portfolio. When βj > 1, the expected excess rate of return is higher
than the market portfolio, also known as an aggressive asset. When βj < 1, the asset
is said to be non-aggressive or risk averse. When βj < 0, a risky asset with negative
beta reduces the variance of the portfolio. This risk reduction potential of asset with
negative βj is something like paying premium to reduce risk.

The primary difference between the SML and the CML is that the SML applies
to any asset but the CML applies only to the return of an efficient portfolio. It can
be arranged so as to relate the excess expected return of that portfolio to be excess
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expected return of the market portfolio:

µR − µf = (σR/σM )(µM − µf ). (4.9)

The SML applies to any asset like the CML relates its excess expected return to the
excess expected return of the market portfolio:

µj − µf = βj(µM − µf ) (4.10)

If we take an efficient portfolio and consider it as an asset, then µR and µj both denote
the expected return on that portfolio/asset. Both (4.9) and (4.10) hold so that

σR/σM = βR. (4.11)

The Security Characteristic Line (SCL) is a representation of the SML in the form
of a regression model. The characteristic line takes the form of a straight line with the
y-axis intercept representing the return of a security in excess of the risk-free return
and the x-axis representing that for a portfolio made up of all assets in the market. The
values that make up the characteristic line are obtained by performing a statistical
regression analysis.

The Security Characteristic Line (SCL) is given as

Rj,t = µf,t + βj(RM,t − µf,t) + ϵj,t (4.12)

where ϵj,t is N(0, σ2ϵ,j). It is often assumed that the ϵj,t s are uncorrelated across

assets, that is, that ϵj,t is uncorrelated with ϵj′,t, for j ̸= j′. This assumption has
important ramifications for risk reduction by portfolio diversification. The SML gives
us information about expected returns, but not about the variance of the returns. The
characteristic line gives us a probability model of the returns, not just a model of
their expected values. Hence, the characteristic line is said to be a return generating
process. The similarity between the SML and characteristic line is that the regression
line E(Y |X) = β0+β1X gives the expected value of Y given X but not the conditional
probability distribution of Y given X. The regression model Yt = β0 + β1Xt + ϵt, and
ϵt ∼ N(0, σ2) gives us this conditional probability distribution. The characteristic line
implies that

σ2j = β2j σ
2
M + σ2ϵ,j . (4.13)

The total risk of the j-th asset is

σj = (β2j σ
2
M + σ2ϵ,j)

1/2. (4.14)

The risk has two components: β2j σ
2
M is called the market or systematic component of

risk and σ2ϵ,j is called non-market, unsystematic, or unique component of risk.
The security characteristic line (4.12) is a regression model

Rj,t = µf,t + βj(RM,t − µf,t) + ϵj,t (4.15)

The variable (RM,t −µf,t) is called a factor, which is the excess return on the market.
CAPM is a single-factor model with the market index being the factor. In CAPM, the
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market factor is the only source of risk besides the unsystematic risk of each asset.
Factor models generalize CAPM by allowing more factors than simply the market risk
and the unique risk of each asset. A multifactor model is

Rj,t = µf,t + β0,j + β1,jF1,t . . .+ βp,jFp,t + ϵj,t (4.16)

where F1,t, . . . , Fp,t are the values of p factors at time t. An example of factors are the
stock market average, dividend yield of S&P 500, a measure of the risk of corporate
bonds, interest rate variables, employment rate, inflation rate, monthly growth rate
in industrial production, etc. The factors are to be correlated among themselves and
are meant to simplify and reduce the amount of randomness required in an analysis
of the assets. The factors are chosen by the modeler and depend on the type of as-
sets being considered. With enough factors all commonalities between assets should
be accounted for in the models. Then the error term should represent factors truly
unique to the individual assets and therefore should be uncorrelated across j, i.e.,
cov(ϵj,t, ϵj′,t) = 0, j ̸= j′. The multi-factor model is a multiple linear regression model.
If a factor model includes the returns on the market portfolio and other factors, then
according to the CAPM, the betas on the other factors should be zero, so testing that
they are zero also tests the CAPM.

With p = 2, one has the two-factor model:

Rj,t = µf,t + β0,j + β1,j(RM,t − µf,t) + β2,jF2,t + ϵj,t. (4.17)

Fama and French (1995) introduced the Three-Factor Model which is given by

Rj,t = µf,t + β0,j + β1,j(RM,t − µf,t) + β2,jF2,t + β3,jF3,t + ϵj,t (4.18)

where the factors F2 and F3 are SML and HML, respectively. The factor SML (small
minus large) is the difference in returns of portfolio of small stocks and portfolio of
large stocks and the factor HML (high minus low) is the difference in returns on a
portfolio of high book-to-market value (BE/ME) stocks and a portfolio of low BE/ME
stocks. Multifactor models refer to model parsimony. A statistical model should have
as few parameters as possible like the CAPM model. One reasonable way of having
few parameters is good is that each unknown parameter is another quantity that must
be estimated and each estimate is a source of estimation error. On the other hand,
a model must have enough parameters to adequately describe the behavior of data.
A model with too few parameters can create bias as the model does not fit the data
well. A model without excess parameters is parsimonious. Large models have less
bias but more variability. Models with too few parameters and sizable bias underfit,
while model with too many parameters overfit. Thus CAPM model underfits and
Fama-French model is parsimonious. Autoregressive process driven by Autoregressive
process was studied in Bercu and Proia (2013).

4.2. Continuous Factor Models

Barndorff-Nielsen and Shephard (2002) showed the good performance of superposi-
tions of Ornstein-Uhlenbeck models for modeling stochastic volatility in exchange rate
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data. Nicolato and Venardos (2003) focused on derivative pricing based on Ornstein-
Uhlenbeck volatility models and Benth (2011) showed their applicability in commodity
markets.

Ornstein-Uhlenbeck process driven by Ornstein-Uhlenbeck process is related
to stochastic volatility models, see Barndorff-Nielsen and Veraart (2013). Simple
Ornstein-Uhlenbeck process has an exponentially declining autocorrelation function.
Ornstein-Uhlenbeck process driven by Ornstein-Uhlenbeck process has a slowly de-
caying autocorrelation function compared to simple Ornstein-Uhlenbeck process. This
generates long memory in the Ornstein-Uhlenbeck process. Parameter estimation for
the fractional Black-Karasinski model of term structure of interest rates was studied
in Bishwal (2022a).

Recently, Bishwal (2022b) introduced the hybrid asset price model with stochastic
volatility, stochastic elasticity, stochastic interest rate and stochastic leverage under
the risk neutral measure which is given by the following seven equations

dSt = χXtdt+
√
Vt−StdWt + ρλtdLτλt

, (4.19)

dVt = −λVtdt+ υλt−dΛτλt
, (4.20)

dXt = α(β −Xt)dt+ σXγt

t dN
H
t , (4.21)

dρt = ((2ζ − η)− ηρt)dt+ θ
√

(1 + ρt)(1− ρt)dZt, (4.22)

dξt = κ(µ− ξt)dt+ ς
√
ξtdBt, (4.23)

dγt = ϖ(ψ − γt)dt+ δ
√
γtdMt, (4.24)

dτt = ξt−dt (4.25)

where Lt is a Levy process, Λt is a fractional Levy process, NH is a sub-fractional
Brownian motion, Wt, Bt, Zt and Mt are correlated standard Brownian motions. Here
St is the asset price which a geometric jump-diffusion, Vt is the stochastic volatility
which is a Levy Ornstein-Uhlenbeck process, Xt is the stochastic interest rate which
is a sub-fractional Chan-Karloyi-Longstaff-Sanders (CKLS) process (see Chan et al.
(1992)), ρt is the stochastic leverage Jacobi (Beta) process, ξt is a volatility modulation
of the driving Levy subordinator which is a Cox-Ingersoll-Ross (CIR) process (see Cox
et al. (1985)), τt is the stochastic time change of the driving Levy subordinator which is
a time integral of the CIR process, γt is the stochastic elasticity model which is a Cox-
Ingersoll-Ross process, v is the volatility of volatility which is independent of L, and
all the 15 parameters λ, α, β, σ, ζ, η, θ, κ, µ, ς,ϖ, ψ, δ, χ,H in the model are positive.

Estimating 15 parameters is a daunting task. In this paper, we made an attempt
to estimate the mean reversion speed parameter and the correlation parameter
for fractional Brownian motion driver without jump component. Estimation of the
remaining 13 parameters in the hybrid model remains open at this stage.
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Concluding Remarks

1) The MCEs are more robust and efficient in comparison to the MLEs.

2) Let T/n = h. The estimators θ̃n,T and ρ̃n,T have error order OP (h
1/2) which are

similar to the Euler scheme. The estimators θ̃n,T,s and ρ̃n,T,s have error order OP (h)
which are similar to the Milstein scheme.

3) It would be interesting to extend the paper to fractional Levy Ornstein-
Uhlenbeck process as the driving process, see Bishwal (2011b).
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